22 research outputs found

    A weighted pair graph representation for reconstructibility of Boolean control networks

    Full text link
    A new concept of weighted pair graphs (WPGs) is proposed to represent a new reconstructibility definition for Boolean control networks (BCNs), which is a generalization of the reconstructibility definition given in [Fornasini & Valcher, TAC2013, Def. 4]. Based on the WPG representation, an effective algorithm for determining the new reconstructibility notion for BCNs is designed with the help of the theories of finite automata and formal languages. We prove that a BCN is not reconstructible iff its WPG has a complete subgraph. Besides, we prove that a BCN is reconstructible in the sense of [Fornasini & Valcher, TAC2013, Def. 4] iff its WPG has no cycles, which is simpler to be checked than the condition in [Fornasini & Valcher, TAC2013, Thm. 4].Comment: 20 pages, 10 figures, accepted by SIAM Journal on Control and Optimizatio

    State-Based Opacity of Real-Time Automata

    Get PDF

    Diagnosability of labeled Dp\mathfrak{D_p} automata

    Full text link
    In this paper, we formulate a notion of diagnosability for labeled weighted automata over a class of dioids which admit both positive and negative numbers as well as vectors. The weights can represent diverse physical meanings such as time elapsing and position deviations. We also develop an original tool called concurrent composition to verify diagnosability for such automata. These results are fundamentally new compared with the existing ones in the literature.Comment: 28 pages, 7 figure
    corecore